Using Self-Reported Data to Segment Older Adult Populations with Complex Care Needs

Authors
Elizabeth A. Bayliss
Jennifer L. Ellis
John David Powers
Wendolyn Gozansky
Chan Zeng
Journal Article
December 2019

Incorporating patient self-reported data may allow health systems to more effectively identify specific groups of older adults with unique needs, thereby helping to inform the development of patient-centered, tailored care management approaches. The authors of this paper used data from a Medicare health risk assessment, including perceived health status, emotional well-being, pain, function, falls, and presence of an advance directive, to develop clinically meaningful subgroups using two different analytical methods. The data used, which extend beyond traditional diagnostic and laboratory data, enable segmentation of older adults into subgroups with identifiable care needs.

This resource describes how segmentation approaches using patient-self reported data can uncover subgroups that may be at high risk of incurring high future costs of care, which may not have been identified using only utilization outcomes because they are not currently using significant health care resources. Health systems may use these methods for population-level care design.

Posted to The Playbook on
Population Addressed
People with Advanced Illness
Frail Older Adults
Key Questions Answered
  • How can health systems incorporate patient self-reported data to identify high-need older adults and more effectively tailor care management programs?
  • What methods can be used to segment heterogeneous populations of older adults into clinically meaningfully subgroups?
Level of Evidence
Moderate
What does this mean?